Multiarray Signal Processing: Tensor decomposition meets compressed sensing
نویسندگان
چکیده
We discuss how recently discovered techniques and tools from compressed sensing can be used in tensor decompositions, with a view towards modeling signals from multiple arrays of multiple sensors. We show that with appropriate bounds on a measure of separation between radiating sources called coherence, one could always guarantee the existence and uniqueness of a best rank-r approximation of the tensor representing the signal. We also deduce a computationally feasible variant of Kruskal’s uniqueness condition, where the coherence appears as a proxy for k-rank. Problems of sparsest recovery with an infinite continuous dictionary, lowest-rank tensor representation, and blind source separation are treated in a uniform fashion. The decomposition of the measurement tensor leads to simultaneous localization and extraction of radiating sources, in an entirely deterministic manner. Résumé Traitement du signal multi-antenne : les décompositions tensorielles rejoignent l’échantillonnage compressé. Nous décrivons comment les techniques et outils d’échantillonnage compressé récemment découverts peuvent être utilisés dans les décompositions tensorielles, avec pour illustration une modélisation des signaux provenant de plusieurs antennes multicapteurs. Nous montrons qu’en posant des bornes appropriées sur une certaine mesure de séparation entre les sources rayonnantes (appelée cohérence dans le jargon de l’échantillonnage compressé), on pouvait toujours garantir l’existence et l’unicité d’une meilleure approximation de rang r du tenseur représentant le signal. Nous en déduisons aussi une variante calculable de la condition d’unicité de Kruskal, où cette cohérence apparaı̂t comme une mesure du k-rang. Les problèmes de récupération parcimonieuse avec un dictionnaire infini continu, de représentation tensorielle de plus bas rang, et de séparation aveugle de sources sont ainsi abordés d’une seule et même façon. La décomposition du tenseur de mesures conduit à la localisation et à l’extraction simultanées des sources rayonnantes, de manière entièrement déterministe.
منابع مشابه
Multidimensional compressed sensing and their applications
Compressed sensing (CS) comprises a set of relatively new techniques that exploit the underlying structure of data sets allowing their reconstruction from compressed versions or incomplete information. CS reconstruction algorithms are essentially nonlinear, demanding heavy computation overhead and large storage memory, especially in the case of multidimensional signals. Excellent review papers ...
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملCompressed Sensing: “When sparsity meets sampling”∗
The recent theory of Compressed Sensing (Candès, Tao & Romberg, 2006, and Donoho, 2006) states that a signal, e.g. a sound record or an astronomical image, can be sampled at a rate much smaller than what is commonly prescribed by Shannon-Nyquist. The sampling of a signal can indeed be performed as a function of its “intrinsic dimension” rather than according to its cutoff frequency. This chapte...
متن کاملSpectral Compressed Sensing via CANDECOMP/PARAFAC Decomposition of Incomplete Tensors
We consider the line spectral estimation problem which aims to recover a mixture of complex sinusoids from a small number of randomly observed time domain samples. Compressed sensing methods formulates line spectral estimation as a sparse signal recovery problem by discretizing the continuous frequency parameter space into a finite set of grid points. Discretization, however, inevitably incurs ...
متن کاملCompressed Sensing Based on Best Wavelet Packet Basis for Image Processing
In this paper, an algorithm named best wavelet packet tree decomposition (BWPTD) is proposed for image compression. In order to obtain better sparse representation of image, best wavelet packet basis is introduced to decompose image signal in the algorithm. Experimental results show that BWPTD is better than single layer wavelet decompression (SLWD) and original compressed sensing (OCS) in peak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1002.4935 شماره
صفحات -
تاریخ انتشار 2010